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Abstract

Value-at-risk models can have many dimensions. We present two new algorithms for

dimension reduction in value-at-risk algorithms with �� approximations. In the first

method, we compute a reduced portfolio with a small mean square error for the residual

and, in the second method, we use low rank approximations to find a reduced portfolio.

The paper concludes with an example, estimating value-at-risk and hedging an option

portfolio, with that demonstrates that dimension reduction leads to large savings in

computational time without sacrificing accuracy.



1 Introduction

In this paper we present two new portfolio dependent methods for dimension reduction

in models for market risk, the risk of a decrease in the value of a portfolio due to adverse

market movements. Banks are required by regulators to use mathematical models for

value-at-risk to estimate their exposure to market risk [3, 15, 18]. To cover potential

losses, capital charges are determined based on the result from these simulations and

on the quality of the banks’ models [2, 3, 4].

Value-at-risk (VaR ) is the maximum loss over a given holding period and with a spec-

ified confidence level �, or equivalently it is the (1��)-quantile of the distribution for

the gain. For linear portfolios and normally distributed market factors, the problem is

well understood and there is a closed form solution for the VaR (see [18, 15]). The

general problem poses two main challenges. First, there is ample evidence that actual

return distributions have fat tails, and normal distributions therefore lead to serious un-

derestimation of the risk of large losses. Constructing realistic models for return and

calibrating these models from historical returns is an important problem, and it has sig-

nificant impact on the conclusions drawn about the market risk for a portfolio [5, 8].

Second, the value of derivative securities, a security for which the value is contingent

on the value of some market factor, for example options, are non-linear functions of

the market factors. To accurately model the risk for derivative portfolios the convexity

must be captured by the model. The non-linearity combined with a high number of

dimensions, makes it an interesting problem for which a number of methods have been

suggested, see for example [1, 6, 8, 9, 10, 13, 15, 17, 18, 22].

The value of a portfolio is a non-linear function of a set of risk factors. For short

holding periods, such as a few days, the gain for a portfolio can be approximated by

the first two terms of the Taylor series:

gain for portfolio � � =

1

2

y

T

�y + y

T

�+�; (1)

where � is the symmetric n � n matrix of second order partial derivatives, � is the n

vector of first order partial derivatives and � is the gain for y = 0. The n-vector of

random variables y is the returns on the risk factors. In the finance literature, equation

(1) is traditionally called a �� approximation. If the time horizon is relatively short,

a number of days as opposed to months, the distribution of � can be used to find an

approximation to the VaR [1]:

prob f�� E[�℄ � VaR g = 1� �: (2)

The random variables y are distributed according to some multivariate stochastic model

with parameters estimated from time series with market data.

For many portfolios, a few main directions determine the main behavior of the gain,

because of the combined effect of correlation of the market factors and the quantities

of each security held in the portfolio. Therefore, it is natural to search for a simpler
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approximation depending on fewer factors k � n that is close to the original model.

This problem has been examined by other authors, e.g., Hull [15] shows how to use

principal component analysis in an interest rate model; Kreinin et al. [16] present a

principal component based method for linear portfolios with normally distributed risk

factors; and Reimers and Zerbs [19] develop a reduction method where asset blocks are

represent by their dominant principal components and cross block covariances by the

covariance for the largest principal component of each block. Our method uses higher

order information about the convexity of the gain, and we also discuss how to handle

non-normal returns.

To be more specific, the goal is to find a projection1
P onto a subspace spanned by the

orthogonal columns of the n� k matrix Q
1

. The idea is to choose P (or Q
1

) such that

�(y) � �(Py) = �

1

(z

1

):

The vectors of random variables y and z
1

satisfy Py = Q

1

z

1

. We present two methods

for this problem. The first method solves the problem by finding a lower dimension ap-

proximation with a small mean square error. The second method uses the identification

of quadratic forms with matrices and solves the problem, after re-scaling the variables,

by finding a lower rank matrix close to the original �� approximation.

In Section 2, we review the fast convolution method for value-at-risk with particular

focus on the estimation and algebraic transformations of the portfolio, a topic that was

hinted at briefly in [1]. Section 3 is the main section of the paper and presents the two

methods for dimension reduction. In Section 4, we follow up on the theoretical argu-

ments of Section 3 with a computational example which illustrates how the dimension

reduction influences the estimate for value-at-risk, and we show that, for the option

portfolio considered, almost all risk is captured by a few dimensions. We also discuss

hedging with the reduced model, and show that the accuracy is good. To find the hedge

we must solve an optimization problem, and the example shows that by using a reduced

model the computation time is only a fraction of the time to solve the full problem. In

the final section, we discuss conclusions and future work.

2 The fast convolution algorithm for value-at-risk

The purpose of this section is two fold. We review the steps of the fast convolution

method for value-at-risk [1] that is used for the numerical example in the Section 4.

Furthermore, in contrast to [1], we give an in depth presentation of the portfolio depen-

dent estimation and the transformations of the�� approximation used in the algorithm.

The input to the algorithm is a time series matrix X and the gain function for a port-

folio. The columns of X are historical time series of daily prices for each of the risk

factors in the model. The gain function is represented as a �� approximation (1). The

1A projection is a Hermitian matrix P such that P2 = P .
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output from the algorithm is the value-at-risk, i.e., the solution to the equation (2). An

important feature of the fast convolution method is that the gradients of value-at-risk

can be computed efficiently. We refer to [1] for details.

2.1 Estimating the mean and covariance for returns

For a time series matrixX stretching over d+1 dates, the element x
ij

is the price of the

jth risk factor on the date i. To avoid complications for prices with different scales and

for risk factors measured in different units, for example stock prices and interest rates,

it is preferable to model the returns on the risk factors, rather than to model the prices

of the risk factors directly. Therefore, we introduce a d � n matrix Y , with elements

defined by

y

ij

= lnx

ij

� lnx

i�1j

;

containing the time series of continuously compounded returns.

The sample means of the returns are

m

j

=

1

d

d

X

i=1

y

ij

;

and sample means for the matrix Z defined by shifted returns z
ij

= y

ij

�m

j

are zero.

The mean of daily returns is typically close to zero.

It has been observed that the statistics of financial time series tend to change over

time. For estimation, this means that old data may not carry much relevant information

and more recent data should be given more importance. A variety of estimators for

the covariance matrix C have been proposed in the finance literature (see for example

[7, 15, 21]). From an algorithmic point of view, many of the estimators are of the form

C = Z

T

WZ; (3)

where W is a weight matrix. Two examples are the standard sample covariance esti-

mate, whereW is diagonal with elements 1=d; and the exponentially weighted estimate

where W is diagonal with

w

ii

=

�

1� �

1� �

d

�

�

i�1

:

To explicitly form the covariance matrix C may be informative, but in algorithms it is

often preferable, for both reasons of efficiency and of numerical accuracy, to use the

above form for the equation of the estimator, if it is available. For example, if d < n,

the C matrix is singular and this problem can be avoided. Furthermore, if the time

series are highly correlated, forming C may lead to loss of accuracy and C is more

ill-conditioned than Z.
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2.2 Portfolio decomposition and portfolio dependent estimation

In the special case that the risk factor model for returns y is a multivariate normal

distribution, it is uniquely determined by the mean m and the covariance matrix C.

However, in general, multivariate distributions are not uniquely determined by their

marginal distributions, and it is easy to construct examples that show that the depen-

dence structure may have a large impact on the risk measure [11, 12]. To accurately

model the distribution in the directions that are important for the portfolio, we propose

a portfolio dependent procedure for estimating the remaining parameters.

First, the �� approximation (1) can be translated to make it a function of the new

random variables z = y �m which have mean zero:

� =

1

2

z

T

�z + z

T

(� + �m) + (� +m

T

�+

1

2

m

T

�m)

=

1

2

z

T

�z + z

T

e

�+

e

�: (4)

The impact of time, on the value of a derivatives portfolio, even for a short holding

period, may be substantial. The first order effect of time can be included in the ��

approximation by taking� in (1) to be the “Theta” of the portfolio, the partial derivative

of the value with respect to time,

� = T� = T

�V

�t

(S

0

; 0);

where T is the holding period. But, since

E[�℄ =

1

2

�

tra
e (C�) +m

T

�m

�

+m

T

�+�;

� vanishes in the equation (2) used to approximate value-at-risk. Since � cancels, we

shall assume that � is zero unless otherwise stated. Similarly, the deterministic gain

from the passage of time can be neglected since any higher order time derivative terms

included in the approximation cancel (mixed derivative terms do of course not cancel

since they are not deterministic).

The �� approximation (4) can be decomposed as a sum of portfolio marginals:

� =

n

X

i=1

�

�

i

2

z

2

i

+�

i

z

i

�

where the random variables z are uncorrelated. The random variables are related by a

linear transformation z = Uz, and � = U

T

e

�. The matrix U is computed by solving

the generalized eigenvalue problem

� = U

T

�U;

C = UU

T

;
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where � is a diagonal matrix with diagonal elements �
i

.

There are several alternative methods for solving this problem. With C formed explic-

itly, the standard method is to find the Cholesky factorization C = V V

T , compute the

Schur form

Q�Q

T

= V

T

�V

and take U = V Q. For estimators of the form (3), forming and factorizing C is

unnecessary. If d < n, we can use the implicit factorizationC = (W

1=2

Z)

T

(W

1=2

Z),

and compute the Schur form

Q�Q

T

= (W

1=2

Z)�(W

1=2

Z)

T

:

If on the other hand d > n, we can use the QR factorization V R = W

1=2

Z, and

compute the Schur form

Q�Q

T

= R�R

T

:

In the coordinate system U , the � matrix is diagonal and the vector of random variables

has the identity as the covariance matrix. For a non-normal model, we estimate the

remaining parameters for each of the transformed variables independently. This means

that we restrict ourselves to models where the components are independent, i.e, the

density can be factored as a product of marginal densities,

p(z) = p

1

(z

1

) � � � p

n

(z

n

):

In the third and final step, the remaining parameters for each marginal density p
i

is cal-

ibrated using either a maximum likelihood estimator or by fitting the quantiles. In the

language of copulas, we choose a copula that lets us fit each marginal in the directions

that are the most important for the portfolio.

2.3 Convolutions and computing value-at-risk

After the estimation phase, we have a distribution p
i

for each of the independent risk

factors z
i

. The impact of z
i

on the portfolio value is captured by a one dimensional

quadratic function,

�

i

=

�

i

2

z

2

i

+�

i

z

i

:

The gain is the sum of the quadratics

� =

n

X

i=1

�

i

To compute value-at-risk, we must find the distribution for �. Let p
i

be the density of

the quadratic �
i

. Since the quadratics �
i

are independent, it follows that density for �

is the convolution of the marginal densities:

p

�

= p

1

� � � � � p

n

:
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The portfolio density p
�

can be approximated by discretizing the marginal densities p
i

,

and then multiplying and inverting the product of the FFTs bp
i

. For the discretization,

the densities are restricted to a finite interval covered by a regular grid. Since density

p

i

has a singularity at the critical point of �
i

, special care must be taken to ensure that

the probability density is preserved. We take

p

(i)

j

= prob

i

f�

i

2 [�

j

���=2; �

j

+��=2℄g ;

for each grid point �
j

. Then, the probability density is approximated by the FFT:

p

�

j

=

 

n

Y

i=1

d

p

(i)

j

!

_

The computation of derivatives with respect to � and � is very similar in spirit, and we

refer to [1] for details.

The convolution step of the method provides an approximation p�
j

to the density func-

tion for � at each grid point, and similar approximations for the derivatives in the

directions of the coordinate components. To compute value-at-risk, we need to solve

the equation
Z

VaR +E[�℄

�1

p

�

(x)dx = 1� � (5)

where� is the confidence level. Since the integrand is known only at the grid points, we

use a quadrature rule to approximate the integral. The method to compute the gradients

is similar. By differentiating (5) we get an integral that can be approximated with the

trapezoidal rule.

The number of floating point operations required by this method is O(n3+nm logm)

where n is the number of risk factors and m is the grid size. This does not include the

floating point operations in the estimation step. If the standard sample estimators are

used for the mean and covariance matrix with d dates, this adds O(n2d) floating point

operations to the total. Our experiments (see [1]) show that, for a fixed grid size m, the

O(nm logm)-term tends to dominate the computation time.

3 Dimension reduction

In this section, we present two methods for dimension reduction for a value-at-risk

model. Given a portfolio�with many risk factors, the objective in dimension reduction

is to find a �� approximation �
1

that captures the main properties of � but that with

fewer dimensions. Successful dimension reduction greatly reduces the time to compute

value-at-risk. This is particularly important when the problem needs to be solved many

times, for example in an optimization algorithm.
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The change in value for the full portfolio, represented as a �� approximation, is a

function of the form

� =

1

2

y

T

�y + y

T

�: (6)

The constant term has been left out since it will cancel in (2) anyway. We look for

reductions by restricting the dependence in �

1

to a subspace of the original space of

risk factors. Let P be a projection onto the k dimensional subspace spanned by the

orthonormal columns of the n� k matrix Q
1

. Moreover,P? is the projection onto the

complementary subspace spanned by the orthonormal columns ofQ
2

. Let z = (z

1

; z

2

)

satisfy

y = Py + P

?

y = Q

1

z

1

+Q

2

z

2

: (7)

Based on this factorization of the risk factor space, we define the reduce approximation

�(y) � �(Py) = �

1

(z

1

): (8)

In the sections below, we present two methods for finding a projection so that � and

�

1

are close. Method 1 views the functions as random variables and requires the two

functions to be close in a probabilistic sense. Method 2 identifies the functions with

matrices and, if the random variables are scaled properly, closeness can be measured

with a matrix norm.

3.1 Method 1

To find the approximation�
1

in (8), we insist that the mean square error E[(���

1

)

2

℄

is small. To motivate the strategy for dimension reduction, we need the following

lemma:

Lemma 1. Let A be an n� n matrix. Suppose that

max

kak

2

=1

max

kbk

2

=1

E[(a

T

x)

2

(b

T

x)

2

℄ � �:

Then,

E[(x

T

Ax)

2

℄ � n�kAk

2

F

:

Proof. From the Cauchy-Schwartz inequality, it follows that

E[(x

T

Ax)

2

℄ � E[(x

T

x)(x

T

A

T

Ax)℄:

Since AT

A is symmetric, there is an orthogonal matrix Q such that AT

A = Q

T

�

2

Q

where � is diagonal. Hence,

E[(x

T

x)(x

T

A

T

Ax)℄ = E[(x

T

Q

T

Qx)(x

T

Q

T

�

2

Qx)℄:
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Define y
i

= q

T

i

x where qT
i

are the rows of Q. By assumption, we have E[y2
i

y

2

j

℄ � �

for all i and j, and it follows that

E[(y

T

y)(y

T

�

2

y)℄ = E

"

(

X

k

y

2

k

)(

X

l

�

2

l

y

2

l

)

#

=

X

l

�

2

l

X

k

E[y

2

k

y

2

l

℄

� n�

X

�

2

j

:

Since
P

�

2

j

= kAk

2

F

the lemma follows.

Assume that the 4th order moments in the lemma are bounded, and that we have an

estimate for this bound �. Consider a tolerance � > 0. By re-ordering the components

of y, we can order the eigenvalues, the diagonal elements of �, such that j�
i

j � j�

i+1

j

for all i. Let k be the smallest index for which

n

X

i=k+1

�

2

k

� � (9)

Partition y = (y

1

; y

2

) where y
1

contains the first k coordinates of y. We can then write

(6) as

� =

1

2

�

y

T

1

; 0

�

�

�

1

0

0 0

� �

y

1

0

�

+

�

y

T

1

; 0

�

�

�

1

0

�

+

1

2

�

0; y

T

2

�

�

0 0

0 �

2

� �

0

y

2

�

+

�

0; y

T

2

�

�

0

�

2

�

:

The contribution to the mean square error from �

2

is small relative to �, but the ef-

fect on the gain from �

2

may still be large. With a simple trick we can keep all the

information in �

2

. Let V = [v

1

; V

2

℄ be an orthogonal matrix with the first column

v

1

= �

2

=k�

2

k

2

. Since �
2

is orthogonal to the column vectors in V
2

, we define the

(k + 1)-vector z
1

and the (n� k � 1)-vector z
2

in (7) by

z

1

=

�

y

1

v

T

1

y

2

�

and z

2

= V

T

2

y

2

:

Hence, the reduced �� approximation is

�

1

(z

1

) =

1

2

z

T

1

�

�

1

0

0 v

T

1

�

2

v

1

�

z

1

+ z

T

1

�

�

1

k�

2

k

2

�

:

This dimension reduction method is summarized in Algorithm 1.

To relate the reduced�� approximation back to the mean square error, we observe that

the residual has a quadratic term only:

�� �

1

=

1

2

[z

T

1

; z

T

2

℄

2

4

0 0 0

0 0 v

T

1

�

2

V

2

0 V

T

2

�

2

v

1

V

T

2

�

2

V

2

3

5

�

z

1

z

2

�

:
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Input: A mean n-vector m, an n�n covariance matrixC, an n-vector�, an n�n

matrix �, a tolerance � > 0 and a bound for the moments �.

Output: A new �� approximation �

1

with fewer dimensions, and the vector v
1

that characterizes the transformation of the risk factors.

� Translate the �� approximation relative to the mean,

� �+�m:

� Solve the eigenvalue problem

� = U

T

�U;

C = UU

T

:

Order the eigenvalues so that j�
i

j � j�

i+1

j, and let � U

T

�.

� Find the smallest integer k such that

n

X

i=k+1

�

2

k

� �:

� Compute �
1

:

�

1

 [�(1 : k); k�(k + 1:n)k

2

℄;

v

1

 �(k + 1:n)=k�(k + 1:n)k

2

;

�

1

 

�

�(1:k; 1 :k) 0

0 v

T

1

�(k + 1:n; k + 1:n)v

1

�

:

Algorithm 1: Algorithm for dimension reduction with Method 1.
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It can easily be shown that













�

0 v

T

1

�

2

V

2

V

T

2

�

2

v

1

V

T

2

�

2

V

2

�













F

�







V

T

�

2

V







F

:

By the unitary invariance of the Frobenius norm and the criterion (9), we can use the

lemma to prove a bound for the mean square error summarized in the following theo-

rem.

Theorem 1. Given � > 0 and � > 0 such that

max

kak

2

=1

max

kbk

2

=1

E[(a

T

y)

2

(b

T

y)

2

℄ � �:

Then the �� approximation �
1

produced by Algorithm 1 satisfies

E[(���

1

)

2

℄ �

��n

4

:

3.2 Method 2

In Section 2, we argued that a �� approximation (1) can, by a change of variables, be

transformed so that the random variables y all have zero mean, are uncorrelated, and

have variance one. Then the impact of each of the random variables are approximately

equal. A �� approximation (1) can be written as a quadratic form

� =

1

2

[y

T

; 1℄

�

� �

�

T

0

� �

y

1

�

;

and, therefore, we can define the distance between two �� approximations using a

matrix norm:

k���

1

k =













�

� �

�

T

0

�

�

�

�

1

�

1

�

1

�

1

�













2

: (10)

This is the metric that we shall use for dimension reduction.

Consider the Schur decomposition for �,

�

� �

�

T

0

�

= U�U

T

;

where U is an orthogonal matrix and � is a diagonal matrix. The diagonal elements of

� are the eigenvalues and we may assume that they are ordered in decreasing absolute

value j�
1

j � : : : � j�

N+1

j. Let

�

k

= diag(�

1

; : : : ; �

k

; 0; : : : ; 0):

The Schmidt-Mirsky theorem says that U�
k

U

T solves the minimization problem

min

rank(B)=k

k��Bk

2

= k�� U�

k

U

T

k

2

= j�

k+1

j

10



(for a proof see for example [20, p.208] or [14, p.71]).

Given a tolerance � > 0, the Schmidt-Mirksy gives a tool to find the optimal function

�

1

. Let k be the smallest k such that

j�

k+1

j � �:

Then,

k�� U�

k

U

T

k

2

� �:

The terms of the reduced function �
1

can be computed from the matrix U�
k

U

T . Par-

tition the orthogonal matrix U as

U =

�

U

11

U

12

u

T

21

u

T

22

�

=

2

6

6

6

4

u

11

� � � u

1k

u

1k+1

� � � u

1n+1

...
. . .

...
...

. . .
...

u

n1

� � � u

nk

u

nk+1

� � � u

nn+1

u

n+11

� � � u

n+1k

u

n+1k+1

� � � u

n+1n+1

3

7

7

7

5

:

The Q
1

in (7) can be taken as the n � k matrix with orthonormal columns in the QR

factorization Q
1

R = U

11

. For this choice, we get the reduced �� approximation

�

1

=

1

2

z

T

1

R�

k

R

T

z

1

+ z

T

1

R�

k

u

21

+ u

T

21

�

k

u

21

:

The steps of Method 2 are summarized in Algorithm 2. Since the constant term cancels,

we have chosen not to compute it.

For some matrices, the matrixU
11

may be rank deficient.2 This is not a serious problem

since it is easy to show that this leads to an approximation of size (k�1)� (k�1)—it

is a lucky break that earns us the additional reduction of one dimension.

4 A computational example

In this section, we discuss a computational example. The purpose of this example is

twofold. First, we show that dimension reduction effectively reduces computation time

and that this can be achieved without sacrificing accuracy. Second, we compare the

performance of the two methods presented in the previous section. Method 1 has a

computational advantage in that it only needs to solve one eigenvalue problem whereas

Method 2 needs to compute an additional singular value decomposition. We show

that Method 1 also has a slight accuracy advantage over Method 2 in that it produces

2Consider for example
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Input: A mean n-vector m, an n�n covariance matrixC, an n-vector�, an n�n

matrix �, a tolerance � > 0 and a bound for the moments �.

Output: A new �� approximation �

1

with fewer dimensions, and the matrix Q
1

that characterizes the transformation of the risk factors.

� Compute the Cholesky decomposition

C = R

T

R:

� Perform the change of variables:

� R�R

T

;

� R(� + �m):

� Compute the Schur decomposition

�

� �

�

T

0

�

= U�U

T

:

Order the eigenvalues so that j�
i

j � j�

i+1

j.

� Find the smallest k such that

j�

k+1

j � �:

� Compute the QR factorization

Q

1

R = U(1 :n; 1 :k):

� Compute �
1

:

�

1

 R�(1:k; 1 :k)R

T

�

1

 R�(1:k; 1 :k)U(n; 1 :k)

Algorithm 2: Algorithm for dimension reduction with Method 2.

12



a more accurate answer when a single dimension is used for the simulation. When

more dimensions are used, the two methods produce close to identical estimates for

value-at-risk.

For the example, we decided to use a benchmark portfolio of European options. We

took a portfolio with one call option and one put option on each of 35 stocks traded

on the Toronto Stock Exchange. The stocks are from the Toronto35 index. All options

have 3 months to maturity and the strike price is the same as the price of the stock.

To get a �� approximation, we priced the options using the standard Black-Scholes

model with 5% interest rate and volatility equal to the empirical volatility estimated

from market data (in practice implied volatilities should be used for pricing). It is of

course possible to replace the Black-Scholes model with a more sophisticated pricing

model. However, we believe that, for the purpose of this experiment, to illustrate the

performance of dimension reduction and to compare the two methods, this benchmark

portfolio is appropriate.

We estimated the mean and covariance for the return model from daily closing prices

over two years, from May 24 1999 to May 24 2001. In this experiment, we used a

normal distribution for the risk factors. A model with fat-tails adds little to the issue of

dimension reduction and would make the experiment less transparent. We refer to the

authors’ discussion on how to use non-normal models in the fast convolution method

in [1].

To study the effect of dimension reduction, we compute the daily value-at-risk at the

99% confidence level with dimensions k = 1; : : : ; 35. The value-at-risk for a long

position, an investor holding the options, is $4:99 CDN and for a short position, an

investor selling the options, is $8:20CDN. The value of the portfolios is $243:81CDN,

so the long value-at-risk corresponds to 2:05% of the total portfolio value, and the short

value-at-risk corresponds to 3:36%. Figure 1 shows the value-at-risk as a function of

the number of dimensions for the two methods. All four plots have two solid lines.

The top solid lines is the value-at-risk computed from the reduced portfolio �

1

, i.e.,

the solution to

prob[�

1

� E[�

1

℄ < �VaR ℄ = 0:01:

The solid line on the bottom is the expectation E[�
1

℄. Note that the expectation for the

short position is the reflection of the expectation for the long position in the horizontal

axis. Finally, the dashed line is the absolute value-at-risk, the sum of the value-at-risk

and the expectation:

absolute value-at-risk = VaR � E[�

1

℄:

From the figure, we can draw three conclusions. First, Method 1 and Method 2 give

similar estimates for value-at-risk, except for the first point, the case when the portfolio

is reduced to a problem with only one dimension. When �

1

has only one dimension,

Method 2 does not give a reliable answer. Second, for both methods the reduced port-

folio �

1

gives an estimate close to the actual value-at-risk when a few dimensions are

used, the absolute error is less than 1:5% for five dimensions and less than 0:6% for ten.
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Figure 1: The graphs shows 99% value-at-risk for one day as a function of the number

of dimensions used in the computation. The left columns shows the result with Method

1 and the right with Method 2. The first row is for a long position, holding the portfolio,

and the second is for a short position, writing or selling the portfolio.
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Third, separating the absolute value-at-risk into the value-at-risk and the expected gain

is a good idea since the expected gain is easy to compute for the full problem whereas

value-at-risk is more cumbersome.

The main incentive for dimension reduction is to reduce the time for computing an

estimate for value-at-risk. To illustrate one application where dimension reduction

makes a difference, we consider, for the second part of this example, a portfolio with

a short position in the option portfolio above and a long position in the stocks that

hedges 90% of the � for each risk factor. Suppose that we want to hedge this portfolio

with a position a in the index and a position b in a call option on the index. The call

option is similar to the other options: it has three months to maturity and is at-the-

money. Now, we want to solve an optimization problem to find a and b that minimize

the value-at-risk. It is our experience that the solution to the optimization problem is

more sensitive to changes in the� than the � and that the absolute value-at-risk is more

stable. Therefore, to regularize the problem, we decided to include the expectation and

to add a penalty term:

min

a;b

VaR (a; b)� E[�℄ + 0:05jbj � price call:

The penalty function expresses a preference for index positions, a reasonable approach

since using options means a larger trading cost.

To solve the optimization problem, we used a line search method in MINPACK-1. The

results from this optimization is displayed in Figure 2. From these figures we make

two observations. First, Method 1 and Method 2 give similar estimates for value-at-risk

and lead to similar solutions to the optimization problem. Second, the value-at-risk and

hedge parameters, a and b, for the reduced models are accurate when a few dimensions

are used. We see that the abrupt changes in the curves for absolute value-at-risk and

for the expected return are simultaneous and the jumps offset each other leading to a

smooth curve for value-at-risk. Furthermore, the jumps coincide with adjustments in a

and b.

Figure 3 shows the time per value-at-risk function call during the optimization.3 The

two methods lead to almost the same time per iteration, i.e., the extra work for solving

an additional eigenvalue problem in Method 2 is an insignificant addition to the total

time. The figure clearly shows that dimension reduction is an efficient method to limit

the computation time. We choose to show the time for average time per function call

rather than total optimization time, because we used the output from previous optimiza-

tion steps as starting guesses for the next problem and therefore a direct comparison of

time would not be fair. To get an idea of the savings in total time, we note that for 8

dimensions the optimization took approximately 4

1

4

minutes and all 36 dimensions it

took 26 to 28 minutes, a significant savings in problem time.

3The figure shows the median average times for each dimension over three repetitions of the simulation.
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3 -0.8396 1.7137

4 -0.8396 1.7137

5 -0.8396 1.7143

6 -0.8396 1.7143

7 -0.8402 1.7102

8 -0.8362 1.7105

12 -0.8362 1.7105

16 -0.8362 1.7105

20 -0.8361 1.7104

24 -0.8290 1.6823

28 -0.8290 1.6823

32 -0.8290 1.6823

36 -0.8290 1.6823

# of dim. Index Call

1 -0.7993 1.8002

2 -0.8376 1.7473

3 -0.8388 1.7395

4 -0.8388 1.7395

5 -0.8146 1.6790

6 -0.8146 1.6790

7 -0.8146 1.6790

8 -0.8146 1.6790

12 -0.8146 1.6793

16 -0.8147 1.6619

20 -0.8145 1.6607

24 -0.8156 1.6562

28 -0.8102 1.6537

32 -0.8102 1.6537

36 -0.8116 1.6535

Figure 2: Hedging an option portfolio with an index call option and a position in the

index. The graphs shows value-at-risk for the hedged portfolio as a function of the

number of risk factors used. The lines are as before.
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Figure 3: Time in seconds per value-at-risk function call. The time for Method 1 is the

solid line and the time for Method 2 is the dashed line. The times are mean average

time per function call for three simulations for the same problem.

5 Conclusions

In this paper, we have presented two new methods for dimension reduction in value-at-

risk algorithms. The purpose of dimension reduction is to find a portfolio that depends

on fewer dimensions, that still has the main properties of the original one, and thereby

to reduce the computation time. Method 1 computes a new �� approximation that is

close in the sense that the mean square error is small. Method 2 uses the identification

of quadratic forms with matrices and finds a reduced �� approximation by computing

a nearby matrix of low rank. To illustrate the usefulness of dimension reduction and

to compare the two methods, we studied a portfolio of options on the stocks in the

Toronto35 index. The example shows that both methods lead to similar results and

that a few dimensions is enough to get an accurate estimate to value-at-risk. Finally,

we show an example of dimension reduction in an optimization problem for hedging

an option portfolio. In optimization, value-at-risk needs to be computed many times

and, for problems with many dimensions, dimension reduction leads to large savings

in computation time.
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